

Acute climate challenges in

the coffee secto



Anomaly - Jan-Feb 2014

P. Baker, E. Briggs, L. Pearson ICO 26<sup>th</sup> Sept 2014 '*Climate change, time for action*'



### coffee & climate Climate change is affecting coffee production

- Three major shocks in the past 6 years:
  - Colombia (2008-2012)
  - Central America (2012 ?)
  - Minas Gerais (2014 ?)
- Other countries also affected
  - E Africa
  - Indonesia



### In perial College It's affecting coffee production in various ways

- Warming causes low marginal coffee to disappear (it's happening but poorly documented)
- But: main current effects are from weather shocks drought, flood
- And indirect effects pest and disease upsurges (rust now found up to 2000 m asl)







# Acute challenges

- Learnt from our initiative: CC is already affecting coffee farming urgent action required in many cases
- Adaptation is needed but to what?
- It's impossible to make farmers 'bullet-proof' to all possible climate problems
- We have to identify major threats, these are location specific, so we have to do it in a participatory fashion by consulting with farmers, local experts (especially extensionists)
- And then relating to available climatological/meteorological data
- In this way we 'triangulate' different data sources to arrive at the most important CC-related issues





## Acute challenges

- Adaptation with what?
- We have assembled a large number of 'tools' various agronomic techniques that can help farmers ameliorate the effects of climate change – e.g. soil covers, shade, ways to deepen root growth,
- And we have been trying these out with farmers and modifying them to suit local conditions

# Some of c&c's adaptation work in MG (S de M)



(Lage et al. – mostly drought-related)







# Acute challenges

- Adaptation how?
- This is now the main challenge: we have got to the point where we can identify likely CC problems, and offer a range of adaptation options
- But how are farmers going to use them?
- How costly are they?
- Which farmers can benefit most?
- Which farmers need to start diversifying out of coffee?
- How do you scale up?



### **Price fluctuations**

 ~ 100% swings in a few months







# Farmers are facing increasing uncertainties

green coffee

Thousands tons

• E.g. China: 3+ million sacks by 2020?







### **Climate uncertainty**

- IPCC AR5: For precipitation the models perform poorly; as the IPCC AR5 summary report puts it:
  - At regional scales, precipitation is not simulated as well, and the assessment is hampered by observational uncertainties.
- Despite a lot of modelling, accurate mid and long-term projections are not much practical help to farmers
- We can identify and help adapt to current difficulties, but future shocks are largely unknown and probably unknowable





# Not just farmers

- We too, as agencies trying to help farmers, have limited understanding of likely future weather events and price regimes;
- We have limited ways to characterise farmers according to their needs and capabilities;
- We cannot have a one-size-fits-all strategy for famers: in marginal areas farmers will have to be helped to diversify whilst at the other extreme other farmers may be able to intensify and earn adequate/enhanced rewards;
- A major task therefore is how to identify and characterise current farmer livelihoods – some farmers may be already innovating, adapting and doing well (positive deviance) others we know are faring badly, but why and how can we improve their situations?





# Practical example of climate-related difficulties faced by coffee farmers

### **Emily Briggs**

MSc. student Imperial College

### Coffee & climate Case study of farmers in El Salvador, Honduras & Guatemala









# Falling yields and rising costs



---El Salvador ----Honduras -----Guatemala





# Falling profits from coffee farming



- 66% of surveyed farmers in El Salvador recorded a loss in 2013/14.
- Surplus income after meeting basic household expenses declined by 20-30% in all countries 2013/14.

### coffee & climate Dependence on coffee income & vulnerability





- Higher dependence means higher vulnerability to fluctuations in yield and coffee price.
- Vulnerability is highlighted through food insecurity. Households suffering from food insecurity in 2013:
  - El Salvador: 66%
  - Honduras: 66%
  - Guatemala: 10%



### coffee & climate Livelihood strategies: coping and adapting



**Coping techniques** 

- Reducing inputs can undermine future yield.
- Reducing food and household expenditure may reduce human capital.
- Does alternative income really reduce vulnerability?
- No households reported diversifying out of coffee.







# Household wellbeing

| Capital   | Trend |
|-----------|-------|
| Natural   | ➡     |
| Financial | ➡     |
| Human     | ➡     |
| Physical  |       |
| Social    |       |

- Overall wellbeing is declining.
- Households with access to finance, remittance and higher income diversification have suffered smaller declines in wellbeing.
- This research has gathered valuable baseline data on household wellbeing and the economics of coffee farming at the farm level.









#### weather and prices







# Old strategy no longer works?

|                |                               | Specific tools for outcome preferences/strategies                                                                                  |                                                                                                                                              |  |  |  |
|----------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| & consequences | Beliefs about<br>cause/effect | Certain                                                                                                                            | Uncertain                                                                                                                                    |  |  |  |
|                | Certain                       | <ul> <li>Computational strategy</li> <li>CBA</li> <li>Multi-criteria analysis</li> <li>Farm-level indicators</li> </ul>            | <ul> <li>Compromise strategy</li> <li>Participatory (e.g. stakeholder analysis, anthropology)</li> <li>Negotiation tools</li> </ul>          |  |  |  |
|                | Uncertain                     | <ul> <li>Judgmental strategy</li> <li>Scenario analysis, expert<br/>panels, simulation &amp;<br/>gaming</li> <li>Models</li> </ul> | <ul> <li>Inspirational strategy</li> <li>Cognitive aids,<br/>brainstorming sessions,</li> <li>Training and learning<br/>scenarios</li> </ul> |  |  |  |

Understand & predict causes

\* After: de Boer et al Global Environmental Change 20 (2010) 502–510





### Simulations and scenarios

### Lee Pearson

PhD student Imperial College





# Modelling Risks of Coffee







# Planning without considering risks

- Certain predictions with basic sensitivities
- Clear decisions, but is it accurate?
  - Resilience?
  - Roya?
  - Livelihoods?





### coffee & climate

- Ability to test assumptions:
  - How bad will Roya events every 20 years be? Every 5? Etc.
  - How will higher price volatility affect our projects?
- Ability to compare scenarios:
  - GAP vs. traditional
  - No organization development vs. bulk sales via farmer organizations

| eamdie deelii te |
|------------------|
|------------------|

|                | 1a |        | 1b |        | 2a |        | 2b |        |
|----------------|----|--------|----|--------|----|--------|----|--------|
| NPV            | \$ | 767    | \$ | 9,155  | \$ | 20,848 | \$ | 25,926 |
| IRR            |    | 11.27% |    | 22.55% |    | 36.00% |    | 31.80% |
| % years CF>0   |    | 52%    |    | 64%    |    | 56%    |    | 60%    |
| % years CF>min |    | 40%    |    | 48%    |    | 56%    |    | 60%    |

#### **Undiscounted Cash Flow Comparison**









# coffee & climate enabling effective response Monte Carlo simulation

- Given risks:
  - How often can we expect a project to meet criteria?
  - Which scenario gives lower chance of the downside outcomes?

#### Imporial College







## **Demonstration in Excel**



Microsoft Excel ro-Enabled Works

#### coffee & climate enabling effective response

#### Imperial College London



## How do farmers respond to change?

#### Nicole Westfall MSc student Imperial College

- A year after heavy attacks by rust
- Farmers have responded
- Few show signs of livelihoods shifts
- Should we be trying to influence them?



Figure 7: Reactions by farmers heavily affected in the 2012 coffee leaf rust outbreak in the following season (2013) as observed by extension service workers.



## Imperial College



# Acute challenge: how do farmers make decisions?

- We are just at the start of this
- Classically farmers are risk-averse, slow to react
- With low income and sunk costs in a perennial system they are not well placed to react
- We are going to have to understand a lot more about how farmers think and perhaps how we can nudge them to change, diversify in the future





- In the face of such complexity we need not only a systematic approach to identifying and developing practical tools (done at pilot scale)
- We also need clear and robust ways to identify farmers according to needs and capabilities
- We need to develop alternative strategies
- We need to assemble this into a form that is practically useful
- But we don't have time to do it by long-term experiment
- Increased use of surveys, simulations, participatory learning with farmers is the best way



### Coffee & climate NE Minas – coffee farmers say climate is the most pressing problem

- Farmers around Capelinha rate climate as their main production problem
- Drought is a principal concern
- But is it climate change?
- A major difficulty is to distinguish between isolated or cyclical events and long-term change









### Our work shows long-term changes

Ramiro Ruiz (Uni MG Belo Horizonte)

### •Jan-Mar rainfall 1961-1980







Ramiro Ruiz (Uni Belo Horizonte)

### •Jan-Mar rainfall 1981 – 2011 getting drier in NE of Minas







### **Imperial College** London In the NE MG case we can give quite simple advice

- Farmers in NE Minas Gerais are right it has been getting drier, it's a long term trend
- Modelling into the future suggests this trend will continue
- Farmers have two options
  - Install irrigation
  - Start diversifying out of coffee
- Unfortunately, in many cases we can't give such clear advice
- But this is what we have to do, otherwise farmers won't listen

### coffee & climate

### Decision making bounded rationality and heuristics



Make it simple

### Make it complex

**Imperial College** 

London



Gerd Gigerenzer Max Planck Institute Berlin







# Tools for thought, decision and action

- In a world of uncertainty you need rules of thumb, called heuristics.
- Many of my colleagues ... think that people are basically hopeless when it comes to understanding risk, and we need to nudge them into behaviour from birth to death.
- My own research has shown that we can easily teach people and give them the tools.

[G. Gigerenzer]

### coffee & climate Major changes in the coffee knowledge system needed

- Coffee production requires ~ 100 different technologies and techniques (nursery to green coffee)
- In the light of CC we need to review each step and modify where needed
- Coffee production manuals are out of date: they often deal with a single technology package. They don't deal with uncertainties, livelihood strategies
- At the very least farmers and other stakeholders need to understand the challenges facing them. All too often they simply don't know





# Conclusions: coffee is a complex system

- Increasing number of shocks makes management more difficult for farmers
- We simply don't know what or where the next big shock will come
- No single technique or approach is sufficient to analyse the system
- Or offer viable solutions
- We need a wide range of approaches
- We need a wide range of expertise
- This is why we need a joint effort







# What is your Plan A, B, C etc?

- Your countries are going to have to take some very difficult decisions
- How do you allocate scarce resources for the best possible outcome for farmers?
- How much coffee? Where? How will you grow it? What support will be needed?





### coffee & climate Large number of urgent needs and actions

- c&c initiative has made a good start on characterising the problem and developing a logical, science-based process to help farmers adapt
- But much more needs to be done
- We can't do this by ourselves major level of collaboration is needed
- Retraining, capacity building, collaborative pre-competitive ventures, strategic planning
- This is urgent, we need to start acting together now





Power, time, gravity, love. The forces that really kick ass are all invisible. [D Mitchell; Cloud Atlas]